ТЕМА УРОКА: «Возрастание и убывание функции. Экстремумы».

ЦЕЛЬ: дать понятие монотонности промежутков возрастания и убывания, экстремумов функции.

Теоретический материал для самостоятельного изучения.

1. Монотонность функции.

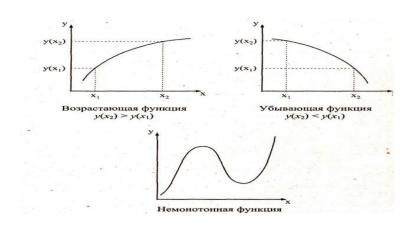
Рассмотрим еще одно свойство функции — монотонность (то есть возрастание и убывание). **Функция называется возрастающей, если большему значению** аргумента соответствует большее значение функции

(если
$$x_2 > x_1$$
, то $f(x_2) > f(x_1)$)

Функции называется убывающей, если большему значению функции соответствует меньшее значение аргумента

$$(ecnu \ x_2 > x_1, mo \ f(x_2) < f(x_1))$$

(чертеж графиков функций монотонно возрастающей и убывающей)



Пример 1. Определить монотонность функции: y(x) = -2x + 4. Область определения этой функции — все действительные числа. Возьмем два значения x из области определения этой функции x_1 и x_2 и пусть $x_2 > x_1$. Найдем значение функции в этих точках: $y(x_1) = -2x_1 + 4$ и $y(x_2) = -2x_2 + 4$. Сравним эти значения и определим, какое из них больше. Для этого рассмотрим разницу этих величин: $y(x_2) - y(x_1) = (-2x_2 + 4) - (-2x_1 + 4) =$

$$= -2 x_2 + 4 + 2 x_1 - 4 = -2 (x_2 - x_1)$$

Данная функция является убывающей (чертеж графика на доске).

Функция по всей области определения может быть немонотонна, но на отдельных промежутках функция может быть монотонной. Например. Функция $y = -x^3 + 6x - 8$ в целом не монотонна, но на промежутке $(3; \infty)$ функция убывает, а на промежутке $(-\infty; 3)$ — возрастает. Соответственно такие промежутки называются промежутками возрастания и убывания.

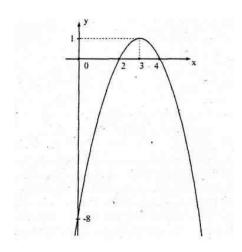
Пример 2. Область определения функции $y = -x^2 + 6x - 8$ является

 $D(y) = (-\infty; \infty)$. Возьмем два значения x из области определения x_1 и x_2 и пусть $x_2 > x_1$. Найдем значения функции в этих точках: $y(x_1) = -x_1^2 + 6 x_1 - 8$ и $y(x_2) = -x_2^2 + 6x_2 - 8$. Сравним эти значения. Рассмотрим разность этих величин $Y(x_2) - Y(x_1) = -x_2^2 + x_1^2 + 6 x_2 - 6 x_1 = (x_2 - x_1)(x_2 + x_1) + 6(x_2 - x_1) =$

 $=(x_2-x_1)(6-x_2-x_1)$. Первый множитель в этом произведении положительный, так как $x_2 > x_1$ по договоренности. Второй же множитель может иметь разный знак. Рассмотрим два случая.

а) Пусть $x_1 < x_2 \le 3$, Тогда $x_1 + x_2 < 6$ и второй множитель $6 - x_1 - x_2 > 0$. Поэтому произведение положительно и $y(x_2) - y(x_1) > 0$, то есть

 $y(x_2) > y(x_1)$. Следовательно, функция y(x) возрастает на промежутке (- ∞ ;3]. б) Пусть $x_2 > x_1 \ge 3$, тогда $x_1 + x_2 > 6$ и второй множитель $6 - x_1 - x_2 < 0$. Поэтому произведение отрицательно и $y(x_2) - y(x_1) < 0$, то *есть* $y(x_2) < y(x_1)$. Следовательно, функция y(x) убывает на промежутке [3; ∞).

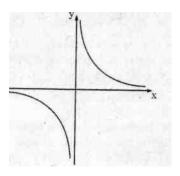


Из данного графика видны промежутки возрастания и убывания.

Если область определения функции состоит из нескольких промежутков, то при исследовании функции на монотонность надо выбирать точки x_1 и x_2 , лежащие в одном промежутке.

Исследуем на монотонность функцию v = x

Область определения данной функции - промежутки ($-\infty$; 0) и (0; ∞). График этой функции (гипербола) хорошо известен.



Видно, что функция убывает в области определения. Исследуем ее на

монотонность. Выберем точки x_1 и x_2 из области определения, так что

$$\frac{1}{x_1}$$
 $\frac{1}{x_1}$ $\frac{x_1 - x_2}{x_2}$

 $x_2>x_I$. Найдем разность $y(x_2)$ - $y(x_I)=\frac{1}{x_2}$ - $\frac{1}{x_1}=\frac{x_1-x_2}{x_1x_2}$. Так как $x_2>x_I$, то числитель этой дроби отрицательный. Если x_1 и x_2 лежат в одном промежутке области определения (то есть $x_1, x_2 < 0$ или $x_1, x_2 > 0$, то произведение $x_1 \cdot x_2 > 0$. Поэтому дробь отрицательна, то есть $y(x_2) - y(x_1) < 0$ или $y(x_2) < y(x_1)$. В итоге получаем правильный результат - функция является убывающей.

Если x_1 и x_2 лежат в разных промежутках области определения (то есть $x_1 < 0$ и $x_2 > 0$), то произведение $x_1x_2 < 0$. Поэтому дробь положительна, то есть $y(x_2)$ $y(x_1) > 0$ или $y(x_2) < y(x_1)$. В результате получаем грубую ошибку - функция является возрастающей.

Пример 4

Докажем, что функция $y = \cos x$ убывает на промежутках [$2\pi n$; $\pi + 2\pi n$].

Понятно, что в силу периодичности косинуса достаточно доказать утверждение для промежутка $[0; \pi]$. Используя определение убывающей функции и формулу разности косинусов, получим:

$$Y(x_2)$$
 - $y(x_1)$ = $\cos x_2$ - $\cos x$, = -2 $\sin \frac{x_2 - x_1}{2} \sin \frac{x_2 + x_1}{2}$. Определим

знак этого выражения, найдя знак каждого множителя. Из неравенства $0 \le x_I <$

$$x_2 \le$$
л можно получить: $0 < \frac{x_2 - x_1}{2} \le \frac{\pi}{2}$ и $0 < \frac{x_2 + x_1}{2} < \frac{\pi}{2}$

Поэтому $\sin \frac{x_2 - x_1}{2} > 0$ и $\sin \frac{x_2 + x_1}{2} > 0$. Следовательно, данное про-

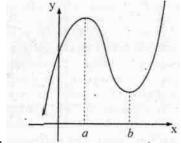
изведение отрицательно, то *есть* $y(x_2)$ - $y(x_1)$ < О *или* $y(x_2)$ - ${}^< y(x_1)$. Таким образом, на указанных промежутках функция $y = \cos x$ убывает.

2. Экстремумы функций

При исследовании поведения функции вблизи некоторой точки x = a удобно пользоваться понятием окрестности этой точки. Окрестностью точки a называют любой интервал, содержащий эту точку.

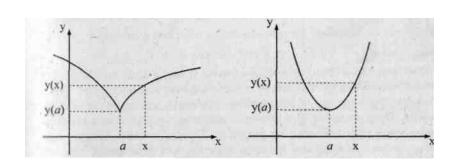
Например, интервалы (3; 10), (4; 6), (4,8; 5,1) - некоторые окрестности точки a = 5.

Характерным свойством функции y(x) являются точки экстремума - точки, в которых меняется монотонность функции. При этом, если возрастание функции сменяется ее убыванием, то такая точка о - точка максимума. Если, наоборот, убывание функции сменяется ее возрастанием, то такая точка b - точка минимума. Дадим более точное



определение точек экстремума.

Точка x = a называется точкой минимума функции y(x), если для всех х из некоторой окрестности точки a выполнено неравенство $y(x) \ge y(a)$. При этом значение y(a) называется минимумом функции y(x).



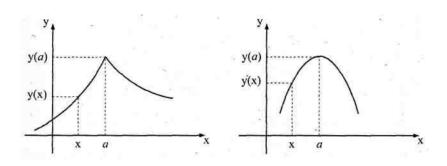
В простейших случаях легко найти точку минимума и минимум функции.

Пример 6. Для функции $y = X^2 + 6x + 10$ выделим полный квадрат суммы:

 $\Gamma = x^2 + 6x + 10 = (x^2 + 6x + 9) + 1 = 1 + (x + 3)^2$. Так как при всех значениях х величина $(x + 3)^2 > 0$, то данная функция имеет минимум $y_{min} = 1$ при условии

$$x + 3 = 0$$
, то есть в точке минимума $x_{min} = -3$.

Точка x=a называется точкой максимума функции y(x), если для всех х из некоторой окрестности точки a выполнено неравенство y(x) < y(a). При этом значение y(a) называется максимумом функции y(x).



Домашнее задание: П.5. № 77, 78 (стр.46)

Учебник: http://uchebniki.net/algebra10/392-uchebnik-algebra-10-11-klass-kolmogorov-2008.html

Выполненные задания отправить на электронную почту

Lelya.Stepanova.66@inbox.ru